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INTRODUCTION 

Hydrogenolysis reactions have been studied for many years. These 

reactions Involve the scission of carbon-carbon bonds and the formation 

of hydrogen-carbon bonds. The hydrogenolysis reaction Is exothermic 

and catalyzed by most transition elements. Hydrogenolysis catalysts are 

mainly employed In the reforming Industry In the form of bifunctional 

metal add oxide catalysts. These catalysts are mainly used in fixed bed 

reactors and usually catalyze dehydrogenation and Isomerization as well 

as hydrogenolysis. 

Hydrogenolysis must be accompanied by hydrocarbon adsorption via 

free radical type surface intermediates. Therefore, hydrogenolysis is 

directly related to the electronic properties of the metals used as cata­

lysts. Some investigators have postulated hydrogenolysis to be rate 

limited by carbon-carbon bond scission, while others feel that adsorption 

of the hydrocarbon is the rate limiting step. Single crystal, poly-

crystalline film and supported catalysts have been employed in hydrogen­

olysis studies. These studies have been conducted in flow reactor sys­

tems, as well as static reaction systems, however most studies have been 

limited to a narrow range of pressure determined by the system used. In 

the following section, some of the Important aspects of hydrogenolysis 

will be discussed and the research objectives of this thesis will be out­

lined. 
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LITERATURE REVIEW 

Industrial Applications 

Hydrogenolysls catalysts are important to many industrial processes. 

Natural gas production can be accomplished via the breakdown of large hy­

drocarbons into methane, ethane, propane and butane. Cracking consists 

of severing carbon-carbon bonds in high molecular weight hydrocarbons to 

produce low molecular weight hydrocarbons. Cracking also consists of 

isomerization of straight to branched chain hydrocarbons. Petroleum is 

composed of saturated straight chain, branched chain and saturated cyclic 

compounds — "naphthenes" (1-8). 

In the reforming process, low octane petroleum fractions boiling in 

the general range of gasoline are converted to compounds with higher 

octane numbers. Three main reactions are employed in this process; de-

hydrocyclization of aliphatics to aromatics, dehydrogenation of naphthenes 

to aromatics and isomerization of straight to branched chain hydrocarbons 

of higher octane numbers (9,10). Platinum is the most important metal 

Involved in reforming. The "platforming" process was developed by Uni­

versal Oil Products (11). However, recently EXXON has developed a new re­

forming catalyst containing no platinum (12). EXXON refers to its cata­

lyst as a multimetallic cluster having three times the activity of the 

conventional platinum catalysts. Platinum-iridium and platinum-rhenium 

bimetallic impregnated Al^O^ catalysts are now widely used in reforming. 

These catalysts have a longer life (before it is necessary to regenerate 

them) and operate at a lower temperature with higher activity than the 
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old platinum catalysts. The catalyst support also plays an Important 

role in reforming, catalyzing Isomerization via a carbonium ion inter­

mediate . 

In coal liquefaction, coal is usually reacted with steam to produce 

COg, CO and Hg with some methane present initially. The CO and under­

go Fischer-Tropsch reactions to form methane and higher hydrocarbons. 

Hydrogenolysis catalysts can produce methane and low molecular weight hy­

drocarbons in one step, thus eliminating intermediate processes such as 

the water gas shift reaction. 

Mechanistic Considerations 

Hydrocarbon chemisorptlon involves the rupture of carbon-hydrogen 

bonds (13-15). At temperatures much lower than required for hydrogenoly­

sis , the chemisorptlon of hydrocarbons on metals is accompanied by hy­

drogen evolution (16,17). The exchange reactions between paraffins and 

deuterium yield deutero-paraffins at temperatures lower than those needed 

for hydrogenolysis (18). These results indicate that carbon-hydrogen 

bonds are activated much more readily than carbon-carbon bonds and dehy-

drogenative hydrocarbon chemisorptlon is the Initial step in hydrogenoly­

sis (19,20). The hydrogen deficient surface species formed then undergo 

carbon-carbon bond scission. This is followed by reaction with hydrogen 

and desorption of products (21). 

The surface species in ethane hydrogenolysis (14,15,22) can be 1,2 

dladsorbed or adsorbed in the form of ethylidene. Hydrocarbons containing 

primary, secondary, tertiary, and quaternary carbons such as isobutane 
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and neopentane have many possible modes of adsorption. There is also 

evidence that the mode of hydrocarbon adsorption determines what type of 

reaction will occur, that is, dehydrocyclization, hydrogenolysis, or iso-

merization. 

Anderson and Baker (23) have found the following reaction to occur 

for hydrocracking of hydrocarbons over nickel, tungsten, rhodium, and 

platinum: 

Neopentane Isomerizatlon can occur via 1,3 diadsorption in the fol­

lowing manner: 

Platinum and iridum were found to be very active for this isomerization 

reaction by Boudart and Ptak (24). It was believed that since most work 

was done on supported catalysts, the support was responsible for isomeriza-

tion, however Anderson and Avery (25) showed that isomerization does oc­

cur on unsupported metals and the above mechanism is most likely. Metal 

catalyzed isomerization is found to be energetically favorable via the 

previously mentioned intermediate by Huckel calculation (26). There is 

still some controversy over the isomerization activity of iridium. Boudart 

1) Isomerization 

2) Product formation, where the product carbon number 
exceeds that of the parent hydrocarbon reactant 

3) Hydrogenolysis product distributions 

H^(CH_) 
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and Ftak (24) find iridium active for isomerizatlon reactions while 

Anderson and Avery (25) do not. It is believed that the more carbonlum 

ion like the surface intermediate, the greater its isomerizatlon proba­

bility becomes. The 1,3 diadsorbed surface species mentioned earlier 

is intermediate in energy between a free radical and a carbonlum ion 

and, therefore, is very susceptible to isomerizatlon (26). The electro­

negativity of the metal catalyst also plays an Important role in isomeri­

zatlon. The more electronegative the metal, the better its chance is to 

obtain an electron from the surface Intermediate's P orbital to cause 
z 

double bonding to at least one carbon, favoring isomerizatlon. 

Trladsorption of isobutane on (111) platinum crystals was proposed 

by Anderson and Avery (25) as well as 1,3 diadsorptlon of isobutane to 

(100) platinum. 

The (111) face is believed to be able to accommodate the trladsorbed 

species better. 

The apparent hydrogenolysis activation energies for the butanes and 

neopentane are lower than for ethane. This seems to indicate a different 

surface Intermediate is involved. Since neopentane can not 1,2 dladsorb 

H 

* 

Trladsorption 1,3 Diadsorptlon 
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but has the same activation energy as the butanes, it is believed that 

the butanes do not 1,2 dladsorb either. 

Table 1. Hydrogenolysis on unsupported metal films^ 

Temperature range Activation energy 
Metal Reactant in "C in kcal/mole 

Pt ethane 274-340 57 
n-butane 256-300 21 
isobutane 265-299 21 
neopentane 239-295 21 

Ni ethane 254-273 58 
propane 217-267 31 
n-butane 188-209 34 
isobutane 201-221 30 
neopentane 203-265 32 
neohexane 181-200 25 

^rom Anderson and Baker (23). 

On iridium, ethane appears to 1,2 dladsorb. Neopentane either 1,3 

diadsorbs or triadsorbs. On most hydrogenolysis catalysts, isobutane 

1,3 diadsorbs or triadsorbs. The apparent energies of activation for 

hydrogenolysis on iridium are shown in Table 2. On iridium, the energy 

of activation for isobutane is closer to that of ethane than neopen­

tane, therefore, 1,2 diadsorption cannot be ruled out (22,27,28). Both 

1,3 diadsorption and trladsorptlon are conceivable models for hydrocar­

bon adsorption and hydrogenolysis. Energy considerations tend to favor 

1,3 diadsorption for isomerization and trladsorptlon for hydrogenolysis. 

Cyclic intermediates have also been proposed for isomerization, dehydro-
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Table 2. Hydrogenolysis activation energies for thin iridium films 

Tençerature Range Activation energy 
Reference React ant in "C in kcal/mole 

22 ethane 100-224 25.5 
27 n-heptane 135-167 25.4 
28 neopentane 127-203 17.6 

This thesis isobutane 159-212 24.2 

cyclization, and hydrogenolysis of cyclic and noncyclic reactants Je.g., 

hexane (29), cycloalkanes (30)J. 

Kinetics 

A number of reactions can occur on the group VIII metals, of which 

hydrogenolysis, isomerization, and dehydrocyclization are the most im­

portant for saturated hydrocarbon reactants in the presence of hydrogen. 

The extent to which these reactions occur depends on the metal used and 

the method of catalyst preparation. Hydrogenolysis is the only reaction 

that occurs when ethane and hydrogen are the only reactants employed. 

Table 3 shows the extent to which various reactions occur on different 

metals. 

It has been found that hydrogenolysis activity increases as dis­

persion. increases (decreasing crystallite size) to a larger extent than 

could be accounted for by the corresponding increase in surface area 

(31,32). This increase in activity with dispersion can be attributed to 

electronic and geometric properties of the metal. Anderson and Avery 

(25) found that the (111) face of platinum isomerized isobutane to a 
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Table 3. Reaction of n-heptane on unsupported metals in the presence 
of hydrogen® 

Metal Pd Rh Ru Pt Ir 

Temperature (°C) 300 113 88 273 125 

% Hydrogenolysis 5.8 2.7 3.7 8.0 1.3 

% Isomerization 0.4 0.2 0.3 10.0 0.2 

% Dehydrocyclization 0.2 0.0 0.0 3.4 0.0 

% Total conversion 6.4 2.9 4.0 21.4 1.5 

= 5, total pressure = 1 atm, rate = moles n-heptane/hr'gm 

from Carter, Cusumano, and Sinfelt (27). 

greater extent than the (100) face, while the (100) planes had a much 

higher hydrogenolysis activity than the (111) surface. Hydrogenolysis 

activity has also been linked to the % d character of the metal bond 

(19,21). Thermal desorption studies show that steps and kinks are the 

most probable sites for hydrogenolysis (16,33,34). In the hydrogenoly­

sis of saturated hydrocarbons possessing a number of nonequivalent car­

bon-carbon bonds, there is the possibility of different rates of rupture 

at different locations in the molecule. Of particular interest in catal­

ysis is the product distribution associated with different metals. Nick­

el is highly selective for terminal carbon-carbon rupture (23,35). This 

is shown in Table 4. Platinum is nonselective with respect to carbon 

bond cleavage and all products are obtained. Some examples are given in 

Table 5. 
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Table 4. Initial products from hydrogenolysls on thick polycrystalline nickel films (mole %)^ 

Reactant T(°C) CH4 C2H6 C3H8 n-C4Hio 1-64810 "-C5H12 i-CsHiz 

Propane 223 88.0 12.0 

Neopentane 210 87.5 9.0 3.5 

n-Hexane 273 94.3 3.3 1.0 0.7 0.1 0.5 0.1 

Methyl-
cyclopropane 

200 80.0 10.0 

^From Anderson and Baker (23), 

1 

Anderson (35). 

Table 5. Initial products for platinum films (mole %)* 

Reactant CH4 C2H6 C3H8 n-C4H]^0 i-C4Hio n-C5Hi2 i-CsHlZ 

Ethane 100 

n-Butane 32 29 28 11 

Isobutane 24 6 20 50 

Neopentane 14 5 4 3 10 5 59 

Isobutane 
(111) 

8 3 6 83 

Isobutane 
(100) 

15 13 13 59 

^From Anderson and Avery (25); H^/hydrocarbon = 12. 
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Thus far, no general rules have been developed to predict product 

distributions on different metals. The product distribution varies sig­

nificantly depending on the catalyst employed. This is illustrated in 

Table 6. Product distributions also appear to depend on hydrogen pres­

sure (36). 

Table 6. The hydrogenolysis of n-heptane over unsupported metals 
(mole %)a 

Metal S»6 ""^4^10 *-^5*12 *"^6^14 

Pd 46 4 46 

Rh 42 4 3 3 5 41 

Ru 28 12 13 12 10 25 

Pt 31 13 17 16 9 14 

Ir 21 21 15 14 14 15 

^Carter, Cusumano and Sinfelt (27); ^ at™» Hg/n-C^ = 5. 

There are very few papers in the literature dealing with the hydro­

genolysis of isobutane on iridium (25,36). Most kinetic studies were 

done on ethane in very narrow pressure ranges. Typically, the kinetic 

data were fit to a power rate law of the form: 

^ ^hydrocarbon^ ' 

For ethane hydrogenolysis the hydrogen order was usually negative while 

the ethane reaction order was usually reported as positive. This type 

of analysis was also applied to larger hydrocarbons such as propane, 

the butanes and the pentanes. Table 7 shows some reaction orders for 
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Table 7. Isobutane hydrogenolysis orders 

Temperature Isobutane Hydrogen Pressure 
Reference Catalyst range ®C order order range 

25 Ft film 265-299 +.5 +1.4 P„ = 11-44 torr 
**2 

PlSoT'9-3-4 

25 Pd film 270-311 -.2 + . 1 same as above 

36 Ru/AlgO^ 85-130 +.74 — . 66 P„ = 400-700 torr 
"2 

PjgQ = 66-400 torr 

isobutane obtained in this way. The ruthenium study (36) was done in a 

stirred tank reactor. 

Later studies showed reaction orders to be a function of reactant 

partial pressures. The following sequence of reactions was first pro­

posed by Cimino, Boudart and Taylor (3) as the mechanism of ethane hy­

drogenolysis on iron: 

kl 

2* + C,H (9) ̂  C,H * + H* 
^ f k-1 ^ ̂  

K2 

CgH^* + H* + aH^Cg) 

K3 

+ H2(g);=± CH/ + CH^* 

(A-ziHgCg) + CH^* + * a = 
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Step 3 is postulated to be the rate limiting step. Using a steady state 

treatment, assuming that step 2 is at equilibrium leads to the following 

relations. 

^1 PCgHg " ̂-1 ^3 

The rate of the reaction is the rate of the slowest step: 

^ " ̂3 ®C„H 
2 X Z 

e 

k-1 „ a-1 
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The above mechanism assumes reversible hydrocarbon adsorption. Carbon 

bond scission is postulated as the rate limiting process. This mechanism 

has also been applied to higher hydrocarbons. The general scheme for the 

hydrogenolysis of higher hydrocarbons is: 

V2N+2^ SI H2N+2-2a(*dG) + ̂ 2 

% H2N+2-2a(^dG) + H2 —• C^H^Cads) + H^(ads) 

Products 

Most kinetic data for higher hydrocarbon hydrogenolysis is fit by an ex­

pression of the form: 

R i'HC 

[1 + B P/"^] 
H2 

The problem with Boudart's mechanism is that it could not account 

for positive hydrogen orders or negative hydrocarbon reaction orders. 

It also assumed that hydrocarbon adsorption was reversible. In both re­

spects, it is not satisfactory for treating hydrogenolysis on iridium. 

The elementary reactions used by Boudart assume hydrogen is liberated 

during hydrocarbon chemisorption and the carbonaceous surface layer is hy-

drogenated by gas phase hydrogen. However, alternate mechanisms can be 

used to explain hydrogenolysis based on surface hydrogen being used to 

hydrogenate surface carbon to form methane as well as other hydrocarbons. 
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Table 8 shows some product distributions for isobutane on various metal 

catalysts. 

Table 8. Isobutane product distributions (mole %)^ 

Cat alyst CH4 % S«8 °-Vio 
Reference 

W film 59 6 33 2 23 

Pt film 15 8 19 58 23 

Ni film 70 5 10 15 23 

Pd film 49 1 47 3 25 

Ru/Al^O^ 58 29 13 0 35 

^2/hydrocarbon > 1 (23), 5 (25); P ^ = 800, HL/hydrocarbon = 
30-^1 (36). total 

Research Objectives 

The purpose of this research project is to establish the mechanism 

of hydrogenolysis of isobutane on iridium. Kinetic data were obtained 

over a range of pressure spanning three orders of magnitude (.1 - 100 

torr). The kinetic data obtained displayed the entire variation of kinet­

ic orders with respect to the partial pressure of both reactants. The 

activation energy for hydrogenolysis was also determined. A detailed 

mechanism is provided and derived rate expressions have been fit to the 

experimental data. 
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EXPERIMENTAL 

Experimental Techniques 

A pyrex glass and 304 stainless steel system pumped by rotor pumps, 

mercury diffusion pumps and an Ion pump was used to collect kinetic data. 

A schematic of the system Is shown In Figure 1. The system Is divided 

into a low vacuum and a high vacuum side; the high vacuum side consists 

of the mass spectrometer, ion pump and reaction cell. The low vacuum 

side consists of the manifold and capacitance manometer. Gases were 

premixed in the manifold before being exposed to the catalyst during ki­

netic experiments. Pressures were measured by the capacitance manometer 

(MKS Series 315 Head) in the .1 - 100 torr range and by conventional 

-10 -4 
Bayard-Albert ionization gauge in the 1 x 10 - 1 x 10 torr range. 

The capacitance manometer was calibrated against a McLeod gauge (Consoli­

dated Vacuum Corporation, Type GMIOOA, Rochester, New York) using argon. 

Calibration curves were linear having the form: 

Pressure (torr) = C (scale reading) + D 

To prevent zero drift, the manometer head was thermostated at 50°C. 

-7 
The best manifold vacuum was 1 x 10 torr. This was obtained by a 

double stage diffusion pump in series with an LN^ trap. The high vacuum 

side could be pumped to 1 x 10 ̂  torr with a 20 1/s differential ion punp 

- 8  
(Ultek, Model #60-063), after attaining a vacuum of 1 x 10 torr via 

double and triple stage diffusion pumps in series with an L-Ng trap. 
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to 
pumps 

<^= Ultra-High Vacuum Valve 

IG = Ionization Gauge 
G = Gas Storage Bulb 

EAI QUAD I50A 
Mass Spectrometer to 

pumps 

capacitance 
manometer 

variable 
Leok 
Valve 

500 ml 
bund Bottom 
Flask 

10 mil 
Iridium wire 

Reaction Cell Volume = 1599 cc 

Monifold Volume - 750 cc 

Figure 1. Experimental techniques-high vacuum system 
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The high vacuum side includes a 500 ml round bottom flask reaction 

cell in which an iridium wire (10 cm long, 10 mil thick) was spot welded 

to two tungsten support posts. The reaction cell was heated by a tube 

furnace (S. B. Lindberg, Watertown, Wisconsin) between room temperature 

and 250°C. The temperature was monitored by a chrome 1-alume 1 thermo­

couple in direct contact with the reaction cell glass. At equilibrium, 

the temperature remained constant to within ±1.5°C. 

The reactor system was static; reaction mixtures were leaked from 

the reaction volume (reaction cell plus manifold) through a leak valve 

(Granville-Phillips Company, Series 203, Boulder, Colorado) to the dif­

ferentially pumped mass spectrometer (AEI Quad 150A). 

The leak valve was variable and was set so only 1.7% of the reac-

tants were leaked out of the reaction volume during a kinetic run usual­

ly lasting two minutes. The mass spectrometer signal was monitored by a 

dual channel horizontal readout rectilinear thermal writing oscillographic 

recorder (Soltec Corporation, 8K21 Series, Sun Valley, California). Var­

ious mass to charge peaks were monitored depending on the experiment per­

formed. Typically the M/e = 16 peak was observed every 1 second for two 

minutes during a kinetic run. Peak finding was facilitated by an oscillo­

scope (Tektronix Inc., Type BM503). 

The volumes of the manifold and reaction cell were needed In order to 

determine the number of molecules of reactants and products present. This 

was easily done by attaching a standard volume to the manifold and using 

the relationship P^V^ = PgVg. The reaction cell volume was found to be 
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1599 cc and the manifold volume was 750 cc. The system was baked out to 

350°C using a portable oven and heating tapes prior to a series of kinet­

ic experiments. The capacitance manometer head had to be baked out peri­

odically because of fluctuations due to adsorbed gases. 

The mass spectrometer consisted of three main sections: the ioniza­

tion region, the quadrupole region and the electron multiplier. In the 

ionization chamber, gas molecules are ionized by 80-volt electrons emitted 

by a tungsten 3% rhenium filament heated by a variable current of .25 to 

3.0 milliamps. The emitted ions are then accelerated and focused by elec­

trostatic lenses into the quadrupole filter where they are separated on 

the basis of their M/z ratios. The ions are then swept through a filter 

in order of increasing M/z values. The intensity of the output signal 

(voltage) from the electron multiplier is directly proportional to the 

pressure of the gas entering the mass spectrometer. Rates were measured 

in terms of voltage change per unit time and converted into molecules per 

second via mass spectrometer calibration curves and the ideal gas law. 

For the pressure range employed in the kinetic experiments, the mass spec­

trometer calibration curves were linear (the mass spectrometer was cali­

brated against the capacitance manometer). The mass spectrometer was 

calibrated periodically and was found to vary ±6%. It was also found that 

the mass spectrometer signal varied negligibly with the incoming gas 

temperature (.1% per degree centigrade). 
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Materials 

The gases used in all experiments were contained in glass bulbs 

equipped with break seals. In general, gases were of ultrahigh purity. 

Methane (99.99%), argon (99.9995%) and hydrogen (99.9995%) were obtained 

from IMlon Carbide, Llnde Division (Chicago, Illinois) in one liter glass 

bulbs. A lecture bottle of Isobutane (99.96%) was obtained from Mathe-

son Gas Products (Joliet, Illinois) and was loaded into a glass bulb 

in a high vacuum system after being purified by repeated distillations 

using L-Ng" Deuterium (99.99%) was purchased from Air Products and 

Chemicals Inc. (Los Angeles, California) in a glass bulb. Ten mil iridium 

wire was obtained from Engelhard Industries (Newark, N.J.). 

Thin Film Deposition 

Prior to deposition of the catalyst, calibration curves were obtained 

for the mass spectrometer and the system was baked out at approximately 

250°C for 12 hours. All ion gauges were degassed and the reaction cell 

was baked out again with a tube furnace. During this second bakeout 

the tungsten support posts and the Iridium wire spot welded to them were 

degassed by resistive heating with a constant current power supply 

(^Iridium wire 1339°C). 

The high vacuum side was employed in film deposition since it at-

-9 
talned the lowest ambient pressure (1 x 10 torr). The current was in­

creased gradually while the iridium wire temperature was monitored by an 

optical pyrometer. The system pressure was checked by an ion gauge. When 
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the current was increased the pressure gradually increased, reached a 

maximum then decreased. It was found that films deposited in an ambient 

-8 
pressure greater than 5 x 10 torr were catalytically inactive. There­

fore, the current was always regulated to keep the pressure lower than 

- 8  
5 X 10 torr. The reaction cell was at room temperature during film 

deposition (previous studies show this gave the most active films). The 

weight of the catalyst deposited can be calculated in two ways. The 

first involves using the following equation: 

log W = 9.98 - .51 log T(K) - ̂  

From Dushman (37) 

2 
where W = rate of metal evaporation in g/cm sec from a wire of 

surface area .80 cm^ 

T = temperature in K. 

2 
Using the geometric surface area of the glass bulb (303.62 cm ) and 

the bulk density of iridium (22.45 g/cc), the film thickness can be cal­

culated. The following table shows the weight and thickness of the film 

used. The second method consists of weighing the wire before and after 

deposition; this gave 3.0 mg. After catalyst deposition, the film was 

sintered for 1 hour at 250°C in 1 torr of hydrogen. An active film was 

maintained by storing the film in hydrogen when it was not in use (1 torr). 

In general, films were cleaned by heating them 20°C higher than the reac­

tion temperature in 1 torr of hydrogen until all carbon was removed from 

the catalyst's surface as determined by the mass spectrometer. Cleaning 

was considered complete when the methane signal remained constant. 
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Table 9. Thin film deposition data^'^ 

Current Iridium wire Time Deposition Weight 
(ma) temperature, K (sec) rate g/s deposited, g 

3.4 1813 1020 
-10 

8.98x10 9.17x10"' 

3.8 1858 2640 4.39x10"^ 11.59x10"^ 

4.0 1893 1920 4. 71x10"* 9.04x10"* 

4.2 1935 720 1.03x10"® 7.42x10"* 

4.4 1972 2520 2.10x10"® 5.29x10"* 

4.6 2008 1200 4.01x10"® 4.81x10"* 

4.8 2047 240 7.82x10"® 1.88x10"* 

5.0 2100 1980 1.92x10"^ 3.80x10"* 

5.1 2104 720 2.06x10"^ 1.48x10"* 

5.2 2123 300 2.71x10"' 8.13x10"^ 

5.4 2161 1620 4.93x10"' 7.99xlO"4 

5.6 2199 2220 8.77x10"' 1.95x10"^ 

^otal weight deposited 3.30 mg. 

b ® 
Film thickness 48.5 A. 
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RESULTS AND DISCUSSION 

Kinetics and Adsorption 

The two main models eiiq>loyed in heterogeneous catalysis are the Lang-

mulr Hlnshelwood and Rldeal Eley mechanisms. In the first scheme, two or 

more chemlsorbed species react to give gaseous product upon desorptlon. 

The second mechanism involves a reaction between a chemlsorbed species and 

either a gas phase or physlsorbed reactant to give product. Both models 

are derived for the simplest cases below. In both models, adsorption Is 

the first step. 

K. 
A( g) + * «I A* 

K-
B(g) + * ̂  B* 

K - (A*) = (B*) 
•^A - P^(*) S Pg(*) 

Surface site conservation gives an expression for the free surface site 

concentration (*). 

1 = (A*) + (B*) + (*) 

(*) = 
+VbI 

The Langmulr Hlnshelwood rate limiting step gives rise to the following 

expression. 
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If 
A* + B* * Products 

- [1 

The Rldeal Eley approach leads to the rate equation depicted below. 

A* + C(g) —Products 

kK P P 

= Wc<*> = 11 + 

Order plots (that Is plots of log rate vs log partial pressure) can be 

used to distinguish between the two different mechanisms. 

In order to be able to compare rates obtained from different cata­

lysts, product production is usually reported as a rate per unit weight 

of catalyst or per catalylc site. Throughout this thesis, rates will be 

reported in the form of turnover numbers (molecules/site • sec). 

For the hydrogenolysis of isobutane on iridium, the sole reaction 

product Is methane; no other hydrocarbons are observed experimentally. 

For every isobutane molecule consumed, four methane molecules are produced. 

The mechanism employed to explain the experimental data in this thesis 

assumes that the surface is only covered with mono carbon fragments, that 

is, Isobutane degradation is fast and coiq>lete. If the assumption is made 

that each methane comes from a monocarbon fragment occupying one active 

site then the number of monocarbon fragments on the surface equals the 
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number of active sites occupied. Therefore, methane desorption can be 

used to determine the number of active sites. 

Figure 2 shows methane desorption as a function of Isobutane partial 

pressure under reaction conditions. The hydrogen pressure is held con­

stant. The following procedure was employed in obtaining these data. A 

premixed ratio of reactant gases was e:q>osed to the catalyst at reaction 

temperature. After the reaction rate was measured, the reaction gases 

were punçed away. The catalyst was then cleaned by heating in hydrogen. 

The methane desorbing from the surface was monitored by the mass spectrom­

eter. When the methane signal remained constant with respect to time, 

cleaning was considered complete. The number of methane molecules can be 

calculated by taking into account the reaction cell volume and tempera­

ture, the manifold volume and temperature and the ideal gas law. Extrap­

olation to the limiting value at high Isobutane pressure gives the maxi­

mum number of monocarbon fragments on the surface at the reaction tempera­

ture, which is equal to the number of active sites. 

An alternate method of determining the number of active sites can be 

used as a check; this method is depicted in Figure 3. Again, a premixed 

ratio of reactant gas is exposed to the catalyst and the reaction rate is 

measured. The reaction cell is pumped down and the catalyst is cleaned 

by heating in hydrogen. In this experiment, the hydrogen pressure is 

varied while the isobutane pressure is held constant. Extrapolation 

gives the methane coverage at zero hydrogen present. Both of these meth­

ods take advantage of the competition between hydrogen and Isobutane car-
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Figure 2. Methane desorption as a function of isobutane pressure at 209°C 
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Figure 3. Methane desorptlon as a function of hydrogen pressure at 209°C 
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bon fragments for surface sites on iridium. Both figures are essential­

ly Langmuir adsorption isotherms Involving competitive adsorption. The 

average number of surface sites available on iridium at 209*C is shown 

below. 

Njj^(209'C) - 20 X 10^® sites 

The number of active sites calculated here implies nothing about the 

number of metal atoms involved in the catalytic process. For example, 

methane may be bound to the surface in the following forms: 

CHg* CHg* CH* or C*, 

where * refers to a bond between carbon and an active site. Bonding to 

an active site may involve single, double or triple carbon to metal bonds. 

Carbon may even be bound to two or more metal atoms simultaneously. Some 

possible surface bondings are depicted below. 

r- r A X 
M M M MM / \ M k 

As stated earlier, the only reaction product observed was methane. 

It was also observed eagerImentally that for every isobutane consumed 

four methane molecules were produced*, therefore, the net chemical reaction 

for the hydrogenolysis of isobutane on iridium is: 

C^H^pCg) + SHgCg) = 4CK^(g) 
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Deuterium exchange with Isobutane on Iridium was not observed at 

175®C to 209°C; however, earlier Investigations have shown that exchange 

reactions become significant at lower temperatures on iridium (22). It 

appears that above 170*C hydrogenolysis is the primary reaction. Hydro­

carbon adsorption Is irreversible and carbon-carbon bond scission is 

complete, yielding only monocarbon surface fragments. When isobutane 

was exposed to the catalyst at 175°C and 209*C for 10 minutes, the gas 

ambient pumped away and deuterium admitted to the reaction cell the 

largest peak observed via the mass spectrometer was due to CH2D2* No 

other peaks were observable in the 16 a.m.u. to 20 a.m.u. mass range. 

It appears that Œg* is the major surface species remaining after pump 

down; while some C* and CH* may exist, these surface concentrations must 

be very small or CHD^ and CD^ would have been observed on deuteration. 

Thermal desorptlon studies also showed Isobutane to be irreversibly 

adsorbed while hydrogen and methane are reverslbly adsorbed to iridium. 

Methane is reverslbly adsorbed In that after adsorption hydrogénation can 

recover the adsorbed carbon In the form of CH^. In the present work, 

however, methane partial pressures were always sufficiently small so that 

the contribution of gaseous methane to surface monocarbon fragments was 

negiglble. 

Thermal desorptlon spectra show two overlapping peaks for hydrogen 

on polycrystalline iridium. The low temperature peak at 110°C is charac­

teristic of low index crystal faces while the peak appearing at 160°C Is 

due to the interaction of hydrogen with stepped and high Index crystal 
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planes. This was also observed by Somorjai and Weinberg (33,34,38,39). 

Hydrogen adsorption on iridium is very similar to hydrogen adsorption on 

platinum (40,41). Since hydrogen is bound more strongly to the kinks, it 

is possible that hydrocarbon decomposition occurs to a greater extent on 

the kinks than on low index planes. Observation of the thermal desorp-

tion spectra of hydrogen arising from carbon fragments on the surface af­

ter exposing the catalyst to isobutane showed three peaks. Two hydrogen 

peaks were due to atomically adsorbed hydrogen (110°C and 160®C). The 

third peak was centered at 320°C and was due to hydrogen associated with 

carbonaceous fragments on the surface. This has also been observed for 

a number of hydrocarbons on iridium in the literature (16,38,39). The 

thermal desorption spectra are shown in Figures 4 and 5. Thermal desorp-

tion spectra were obtained in the following manner. Isobutane or hydrogen 

was admitted to the reaction cell at room temperature. Each exposure was 

for 10 minutes until an equilibrium presence was observed. The ambient 

gas was then pumped away and heating was accomplished by a tube furnace 

with a powerstat. The heating rate was 8.4°C/min. 

Since deuterium exchange with isobutane on iridium is not apprecia­

ble above 170°C and only monocarbon fragments are recovered from the 

catalyst's surface (mostly CH^*), it appears that isobutane as well as its 

decomposition products are irreversibly adsorbed in the 175-209°C tempera­

ture regime. The following sequence of reactions can account for this if 

the reverse steps are considered negligible. 
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kl 
C^Hio(g) + 2* — C^Hg* + H* 

k-1 

k2 
C.H.* + * " C.H * + H* 
4 9 4 8 

Vs* + * ^ S«6* + ®2* 
k—3 

k4 , 
C_H,* + * -Z=f C.H* + H* 
3 6 IT 3 ^ 

ks , 
C.H * + * ^ C.H * + CH.* 
J 3 \I5- ^ J ^ 

kô _ 
C2H3* + * — + H* 

k? 
C.H.* + * C* + CH.* 
2 2 -kiy 2 

Ihe reverse reactions are included here because as temperature is de­

creased the reverse steps will become more significant. This will ac­

count for deuterium exchange results involving surface species maintain­

ing their gas phase carbon skeletal features. The adsorption of hydrogen 

to the catalyst has been shown to occur via thermal desorption studies. 

Surface hydrogen and monocarbon fragments react in a Langmuir Hinshelwood 

fashion to give methane, as depicted below. 

kg 
C* + H* ^ CH* + * 

k-8 
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CH* + H* CH.* + * 

k-9 

klO 
CHo* + H* CH„* + * 

^11 
CH * + H* ' CH.(g) + 2* 

Vil 4 

HgCg) + 2* ^ 
(^12 

2H* 
k-12 

Multiplying reactions 10 and 11 by a factor of four, taking reaction 12 

three times and summing gives the net reaction: 

C^Hio(g) + SHgCg) = 4Œ^(g) 

The steady state hypothesis can be employed to give a set of simultaneous 

equations which can be solved for surface intermediate concentrations. 

For the nonmonocarbon surface species : 

d(surface intermediate) _ ^ 
dt 

- k3(C4«s*)(*) 

= k^CCgHgAX*) = 

= kg(C2H3*)(*) = k^(C2H2*)(*) 

The above equalities hold because the reverse steps of reactions one 

through seven are considered negligible. 
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The surface concentration of nonmonocarbon fragments is given by 

the following summation. 

vx*> = 1 

For monocarbon surface species, the steady state relations give 

rise to the following equations. 

= 0; kg(C*)(H*) - k_g(CH*)(*) = k^(C2H2*)(*) 

0; kg(CH*)(H*) - k_g(CH2*)(*)=kg(C*)(H*) -k_g(CH*)(*) 

d(CH,*) 2 

-dT- = 0; kio(CH2*)(H*)-k_io(CH,*)(*) = 4k^ P (*) 
4 XU 

The stoichiometry of the reaction requires the rate of methane production 

to be four times the rate of isobutane consumption. 

d(CH *) , 2 
= 0: (.) p (.) 

4 4 iU 

The reverse of reaction eleven is negligible for the pressure of methane 

observed, therefore: 
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For the surface hydrogen: 

When (experimentally verified later) hydrogen adsorption can 

be considered to be at equilibrium. 

(H*) = kJ (•) 

The monocarbon surface fragment concentrations are shown below. 

11 (H*) 

(CH*) = -—y=9 + ^ +- ^— 
kg (H*) 

kg k^o (H.) ^9 ^10 ̂ 11 

kg (H*) kg kg (H*) 

^^-8 ̂ -9 ^1 ^4^10^ ^^-8 ̂ -9 *^-10 ^1 ^4^10 

k„ k„ k,« k„ k„ k,„ k,, ,„^x4 8 9 *^10 (H*) • 8 '10 "11 (H*) 



www.manaraa.com

38 

The conservation of surface site egression is: 

!=(*) + (C^Hg*) + (C^Hg*) + + (%*) 

+ (CgHg*) + (CgHg*) + (CH^*) + (CHg*) 

+ (CH*) + (C*) + (H*) 

Assuming that the mono carbon fragments predominate on the surface, as 

the experimental results suggest, the following simplified surface site 

conservation expression is obtained. 

1 = (*) + (H*) + (CH*) + (CH^*) + (CH*) + (C*) 

12 

4k^ P_ „ 

+ 4 10 (-1- +-L. +_!_ ) 

^12 ^11 ̂ 10 ^10 S ^9 ^8 

"'l 1 1 , 

P„ hi So h ho S V 
2 

+ ( 1 )]"! 
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The rate expression Is defined in terms of hydrocarbon adsorption. 

C^Hio(g) + 2* C^Hg* + H* 

R = 
dt 

C Pf, H DP 

E = A P ^ „  / [ 1  +  B P / + — ^  +  — ^  

VlO "2 P.. * P„ 

,  '  'Y , . ,  '  'V , .  /  
3/2 

Hr 

The above rate equation can be expressed in a linear form at fixed hydro­

gen pressure in the following way. 

N 

^4^10 1 C + F 
i " P ' 3/2 ' 2 

"2 

1 + B P, 

'VlO " A* 

where A = 4k, 

B = K 
12 

/K^ KG KG K^q *^11 

°-V^12<F,K3+4K/4K,„> 
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4^1 1 1 

^"^10 ^8 ̂ 9 ^11 S ̂10^ 

, = i ) 
"ll "8 S "lO 

A plot of this equation for the experimental data is shown in Figure 6. 

The least square lines are given below. 

Table 10. Least square lines for Figure 6. Isobutane order hydrogen-
olysis rate data 

C.H 
: = 115.18 P_ „ + 8.59 P„ = .45 torr 
R C^Hio 

C.H 
Z = 29.42 P„ „ + 10.68 P„ = 2.03 torr 
R C4H10 Hg 

C.H 
—5-^ = 13.64 P^ „ + 11.12 P„ = 4.20 torr 

R C^H^q «2 

Only a few points are shown in Figure 6 for the P„ = 2.03 and 4.20 torr 
^2 

lines; however, a complete tabulation of data points for all calculations 

is given in Appendix 1. 

The intercepts in these plots should satisfy; 
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Figure 6. The linearized rate e3q>resslon at 209®C 



www.manaraa.com

/ISQBUTANE PRESSURE'!"/ TORR'^' ^ 
\ RATE //(Molecules/site sec) 

o o o o o o o o o o  

•o 

ai 

Z 1  



www.manaraa.com

43 

yielding another linear graph. Figure 7 shows that a plot of Ivs P 
2 

derived from the three isobutane order plots in Figure 6 can be reason­

ably treated as linear, with the best least squares fit given by: 

I = 1.87 P„ ̂  + 7.55. 
"2 

This gives the constants A and B in the original rate expression. 

A = 1.75 X 10 ̂  molecules/site • sec • torr 

- I  
B = .25 torr 

Additional information can be obtained from the dependence of the slope 

of the linearized rate equation on hydrogen pressure. Residue deutera-

tion experiments described earlier, in which the principle product was 

CHgDg, imply that concentrations of C*, and CH* species in the residue 

were negligible. This implies that the terms E and F in the rate ex­

pression are also very small. 

It is also found (as will be discussed more fully later) that the 

kinetic order in hydrogen pressure of the isobutane hydrogenolysis reac­

tion varies from +2 to -1, as the hydrogen pressure increases. This 

also suggests that the terms E and F are negligible. Neglecting these 

terms, the slope of the linearized rate low plot is: 
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Multiplying through by P ^ gives 
"2 

Figure 8 is a plot of S vs P ^. The least squares slope and in-
2 "2 

tercept can be used to solve for C and D. 

P  - ^ 3 = ^ + 6 . 1 7  

C = .81 torr ^ 

D = 6.34 (dimensionless) 

The rate expression can now be stated as follows. 

R = 
1 75 = 1°"' 'VlO 

.81torr"^P 6.34 P 

1 + .25 torr-i P, ^ __^&0 

2 P„ * Ho 

Theoretical fits to the experimental data are shown in Figures 9 through 

12. 

The Isobutane order varies from +1 to -1 while the hydrogen order 

varies from +2 to -1. The +2 order exhibited at low hydrogen pressure 

(isobutane pressure held constant) Indicates that the D term in the 

demoninator dominates in the pressure regime over which data have been 
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taken. The most probable reason for E and F being negligible in the 

rate expression is k g and kg are very small compared to the forward 

reaction rate constants. If this were not so and reactions 8 through 10 

were at equilibrium then as the ambient is pumped out all monocarbon 

species would go to C* by the Le Chatelier principle. Deuteration would 

yield only CD^. This is clearly not the case; CH^D^ is the major product 

of deuteration. 

The processes : 

-̂9 
Œg* + * ^ Oi* + H* 

k_g 
CH* + * c* + H* 

being negligible, steps 8 and 9 must be essentially irreversible. Now 

the elementary reactions for isobutane hydrogenolysis between 175°C and 

209°C can be written as shown below. 

k. 

C^Hio(g) + 2* ^ + H* 

^2 
Vg* + * —^ C^Hg* + H* 

^3 
W *  

k, 

CgHe* + * ^ CgHg* + H* 

kg 
C^H^* + * ^ CgHg* + CH^* 
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k, 

CgHg* + * CgH^* + H* 

CgHg* + * U c* + CHg* 

kg 
C* + H* —^ CH* + * 

kg 
CH* + H* —Qj^* + * 

CH * + H* . CH * + * 

kii 
CHg* + H* __!l^CH^(g) + 2* 

ki2 
HgCg) + 2* ^ 2H* 

k_i2 

Since the rate expression is much less complex than the one initially de­

rived, a number of individual rate constants can be obtained. These con­

stants are (at 209°C): 

A = 4k^ = 1.75 X 10 ^ molecules/site • sec • torr 

B = K^2* = .25 torr"* 

The major surface species is CH^*, therefore: 

C = 4k^/jK^2 = .81 torr"* 
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4ki 
D = 1 y »— = 6.34 (dlmenslonless) 

11 10 12 

= 8.65 X 10 ^ molecules/site • sec 

kii = 4.60 X 10 ^ molecules/site • sec 

The hydrogen order variation observed here (+2 to -1) has also been ob­

served for ethane on iridium and platinum (22,42). The hydrogen adsorp­

tion equilibrium constant was found to be lower in this study than 

in previous investigations (22,28) on iridium, however, most of these 

studies were conducted at lower temperatures. Therefore, rate data were 

obtained at a lower temperature in an attempt to elucidate the tempera­

ture dependence of the hydrogen adsorption equilibrium constant. Single 

crystal studies on iridium show that hydrocarbon surface coverage in­

creases with increasing temperature while hydrogen coverage decreases 

(38). The number of active sites had to be recalculated since it was ex­

pected that hydrocarbon surface coverage would be different at a lower 

reaction temperature. Figures 13 and 14 are methane desorption curves at 

175°C. The maximum number of surface sites available at 175°C (assuming 

a one-to-one correspondence between surface carbon and active site) is: 

nj^^(175°C) = 6.70 x 10^^ sites 

Comparing this value to the one previously determined at 209°C 

[njj^(209''C) = 20.00 x 10^^ sites], it is apparent that hydrocarbon sur-
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face coverage does increase as temperature Increases. Making a linear 

plot for the isobutane order data yields the following least squares fit. 

C H 
-4^ = 12.33 „ + 40.09 

R C4H10 

1 + B P 
2 D 

T ^= 40.09 =12.35 

"2 

This graph is shown in Figure 15. 

Preliminary curve fitting of the hydrogen order data gave the con­

stant B. 

B = 1.9 torr ^ 

The constants A and D can now be calculated and are shown below. 

A = 1.46 X 10 ^ molecules/site • sec • torr 

D = 6.12 (dimensionless) 

The value of C used in the 209"C fit was tried for the 175*C data as an 

initial guess, however, it fit the data quite well. 

C = .81 torr ^ 

Figures 16 and 17 show the theoretical fit to the experimental data 

at 175°C. The rate expression at 175°C is: 
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1.46 X 10 ^ molecules/site • sec • torr P „ 

4̂ 10 

.61 torr 6.12 P. _ 

1 + 1., torr-Jp, + 

The hydrogen adsorption equilibrium constant decreases as tenpera-

^2 (209"O = .06 torr'l, ture Increases [K,, (209°C) = .06 torr"^, K-, (175°C) » 3.61 torr~^). 

Therefore, more hydrocarbon is on the surface at 209"C than at 175"C 

(P„ = constant). The following figure shows the surface coverage of 
2 

monocarbon fragments as a function of temperature (P„ and P_ „ con-
"2 4̂ 10 

stant). At low temperatures, hydrocarbon coverage in the form of mono-

carbon fragments is low while hydrogen coverage is high and polycarbon 

surface fragments are reversibly adsorbed to the surface. As the tem­

perature increases, hydrogen surface coverage decreases decreases) 

and polycarbon surface species which are reversibly adsorbed start decom­

posing into monocarbon fragments. As mentioned earlier, it was shown 

that at low temperatures (100°C) deuterium exchange occurs for hydrocar­

bons on iridium but as temperature Increases, hydrogenolysls becomes 

the predominant reaction. These reversibly adsorbed hydrocarbons retain 

their gas phase carbon skeletal features and prefer exchange to hydro­

genolysls at low temperatures. Acting as poisons, they take up sites on 

the surface that would have been available for monocarbon species. Even­

tually, Figure 18 will level off in the high temperature limit. The sur­

face will be covered by a carbonaceous monolayer. 

When saturation occurs, only monocarbon fragments will be on the sur-
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Figure 18. Adsorption as a function of tençera-
ture 
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face and no hydrogen will be adsorbed. If the rate of hydrogenolysis is 

still significant at this point (temperature that causes leveling off 

in Figure 18), then a Rideal-Eley mechanism must be operating in this 

region. There is the possibility that at low temperatures a Langmuir-

Hinshelwood mechanism dominates while at high temperatures a Rideal-Eley 

model accounts for hydrogenolysis. At lower temperatures, isomerization 

may also become a significant reaction, since carbon skeletal degrada­

tion will occur to a lesser extent. This would also account for the 

decrease in the number of monocarbon fragments on the surface at low tem­

peratures. The reverse rate constants for elementary reactions one and 

two must also become larger as temperature is decreased. Only monocar­

bon fragments are observed after pumpout during hydrogénation. Accord­

ing to the law of mass action, decreasing the isobutane pressure during 

pumping causes more reversibly adsorbed hydrocarbon to desorb at lower 

temperatures. 

The geometric surface area of the glass bulb reaction flask, contain-

2 
ing the catalyst is 303.62 cm . The surface area occupied by one methane 

molecule is approximately 6.92 x 10 cm van der Uaals radius = 

1.485 A). The following table shows how many metal atoms are involved in 

the active site based on the geometric surface area of the catalyst. 

Table 11. Metal atoms involved in the active site 

T^C Surface area occupied 
Geometric area 

Area occupied 

// metal 
site 

175 45.43 cm^ 7 
209 135.60 cm2 2 

237 355.96 cm2 1 
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The actual surface area of the catalyst is greater than the geometric 

surface area in general. Therefore, the above values should only be re­

garded as approximate determinations. The values in Table 11 are plaus­

ible. As many as 12 metal atoms have been proposed to be associated 

with the active site for ethane hydrogenolysis on nickel (43). The curve 

in Figure 18 most probably will start leveling off above 237°C (510K). 

Higher temperature data could not be obtained due to experimental limi­

tations, however, this is an interesting area for future investigation. 

There are a number of reasons why the number of metal atoms per 

active site can vary with temperature. One explanation is the major sur­

face species changes as a function of temperature. An example of this 

is shown below: 

A' A\ 
M MM M M M MM 

Another possibility is the surface species bonding changes due to struc­

tural changes in the catalyst surface (reconstruction). 

MM M 

Reversibly adsorbed hydrocarbon (significant at lower temperatures) can 

account for some metal atoms being used for adsorption sites. Increased 

adsorbate mobility would also account for more metal atoms being involved 
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in an adsorption site due to delocalization of the adsorbate. Hydrogen 

adsorption can also reduce the number of sites available for hydrocarbon 

adsorption. This would increase the metal atom to carbon atom ratio as 

temperature decreases. 

The hydrogen surface concentration can be expressed in terms of its 

equilibrium constant. 

_ (H*)2 

12 " Pu (*) 
2 

Using the expression derived for (*) gives: 

2 (H*) = 0. 
hydrogen 

2 

At 175°C, the hydrogen coverage is given below for Pp u = .17 torr and 

6 
1.90(.42)^ 

hydrogen i + i.9(.42)i + 

(.42)* 

. 6.12(.17) 
+ :42 

0 
hydrogen 

.25 

At 209°C , the hydrogen coverage is: 

0 
hydrogen 

.04 
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It appears that hydrogen adsorption is also partially responsible 

for the variation in the metal to carbon surface ratio. If hydrocarbon 

coverage increases significantly above 510K, there will be 2 or more car­

bons associated with each metal surface atom. This could occur if the 

carbonaceous layer was in the form of irreversibly bound ethylidene. 

An energy of activation analysis is shown in Figure 19. The ap­

parent activation energy is 24.20 kcal/mole. This value is intermediate 

to values of the energy of activation for ethane hydrogenolysls, 25.5 kcal 

per mole (22) and neopentane hydrogenolysls, 17.5 kcal/mole (28) on irid­

ium thin films. It appears that while the initial points of attachment 

to the surface of hydrocarbons on iridium may be different, the mechanisms 

of hydrogenolysls are essentially the same. Hydrocarbons tend to decom­

pose as fast as possible on the Iridium surface at temperatures above 

about 170°C, into monocarbon surface fragments. This irreversible decom­

position into monocarbon surface intermediates accounts for methane being 

the sole product of hydrogenolysls. 

Table 12 gives the individual rate constants at 175°C and 209°C. 

Table 12. Some hydrogenolysls rate constants 

T'C 

kl 

(molecules/site«sec»torr) 

Kl2 

(torr-1) 
^10 

(molecules/site«sec) 

-2 
175 .36 X 10 3.61 .95 X 10 

-2 
209 .44 X 10 .06 8.65 X 10 
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In general, for any rate constant; 

= Ae-Ci'm 

t , (T, )  IT  

The energy of dissociative hydrocarbon adsorption (elementary step 1) 

can be calculated. 

Adsorption (k]) = 2.52 kcal/mole 

^desorption " Adsorption = (AH = enthalpy change during dis­

sociative hydrocarbon adsorption) and AH = ^ for ele­

ment airy reaction step 1, must be very high compared to ad­

sorption (E_ „ + E_ - - E_ on the order of 60 kcal/mole). Therefore, 
ir—H il—C Un 

energy considerations favor adsorption and dissociation of the hydrocar­

bon as opposed to reversible adsorption with carbon skeleton retention. 

The enthalpy of hydrogen adsorption can also be calculated. 

AH(Ki2) = 51.52 kcal/mole 

This value is higher than values reported in the literature by about 21 

kcal/mole (44), however, it is assumed here that the enthalpy of adsorp­

tion is not a function of surface coverage and in all probability it is. 

Heats of reaction are also a function of the support used (energies of 

activation can vary by 20 kcal/mole for different supports). Here, the 

catalyst is vapor deposited on pyrex. 
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The activation energy for the net hydrogenolysis of isobutane is in­

termediate to those determined for ethane and neopentane. Since neopen-

tane can't 1,2 diadsorb and ethane can'11,3 diadsorb or triadsorb, iso-

butane must be adsorbing in all three fashions (1,2; 1,3 diadsorption and 

triadsorption), however, between 175°C to 200°C decomposition into mono-

carbon fragments is extremely rapid. Very little isobutane remains on the 

surface with its carbon skeleton intact. 

Mechanistic Interpretation 

An evaporated iridium thin film is polycrystalline. It consists of 

the low indexed (100), (110) and (111) surfaces as well as surface steps, 

kinks and other high indexed planes. Although some work has been done on 

inducing film orientation in general, films will exhibit all the charac­

teristic features described above. It has been found that the (110) irid­

ium surface reconstructs to a 1 x 2 surface arrangement when cleaned (45, 

46). Hydrocarbon adsorption as well as oxygen adsorption transforms the 

(1 X 2) structure to a (1 x 1) surface (45,46). The clean Ir (111) sur­

face retains its f.c.c. arrangement at the surface as does the (100) 

crystal plane (47,48). Hydrocarbon adsorption to the (111) surface pro­

duces a (9 X 9) surface structure while adsorption to the Ir (100) sur­

face produces a (1 x 1) and a (5 x 1) overlayer (48). Stepped iridium 

surfaces have been found to exhibit disordered carbonaceous overlayers (34). 

Hydrogen adsorption does not alter the LEED patterns of the (110), (100), 

(111) or stepped iridium surfaces (38). Since hydrogen and hydrocarbon 
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fragments are bound more strongly to stepped surfaces than low indexed 

planes, it is believed that hydrogenolysis occurs on hi^ indexed sur­

faces as well as on the (110) (1 x 2) reconstructed surface. The (110) 

surface is believed to behave as a stepped surface since it can be en­

visioned as a surface composed of monoatomic height (111) steps separated 

by "terraces" one atom in width. Single crystal studies (38) show hydro­

carbon surface coverage increases while hydrogen surface coverage de­

creases as temperature increases; this is in agreement with (Figure 18 

in this thesis) polycrystalline results. It appears the hydrogen is ex­

tremely mobile on the metal surface since diffusion energies are much 

lower than desorption energies for hydrogen on iridium (48,49). It has 

been postulated that the energy of activation necessary for hydrogen dif­

fusion increases near high indexed planes and steps, thus making hydro­

gen appear to be held more strongly at these locations. 

The following reaction sequence is a possible explanation of carbon 

bond scission on the surface. These reactions parallel the previous se­

quence of reactions used to derive the kinetic rate law. The isobutane 

molecule must break down completely into monocarbon fragments rapidly 

since no lower hydrocarbon fragments are observed except methane. The 

(110) surface is used here since it is not smooth and is the most prob­

able low index site for hydrogenolysis. This surface is shown on the 

next page. Isobutane chemisorption and carbon carbon bond scission are 

shown in the next figure. The hydrogens fall into the troughs vrtiere they 

can linearly diffuse across the surface while the CHg fragments remain 
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CLEAN IR (nO)-(lX2) RECONSTRUCTED SURFACE 
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Figure 20. Ir (1 X 2) surface 
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Figure 21. The Ir (111) and (100) surfaces 
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Figure 22. Isobutane adsorption 



www.manaraa.com

74 

fixed to the active site. Hydrogénation of the monocarbon fragments is 

followed by methane desorption to complete the process. 

Hydrogenolysis activity has been linked to the percent d character 

of the metal bond (19,21), however, it is more physically significant 

to discuss this effect in terms of d orbital occupancy. As d orbital 

occupancy is decreased, hydrogenolysis activity of the metals goes 

through a maximum, for example: 

Metal Re Os Ir Pt 

Relative activity 10^ 10^ 10^ 1 
for ethane hydro­
genolysis at 250°C 

from Sinfelt (21) 

This can be explained on the basis of chemisorption of the reactant 

hydrocarbon. As d orbital occupancy decreases, the electron deficient 

d orbitals chemisorb hydrocarbon free radicals more readily. Increasing 

the surface concentration of hydrocarbon increases the rate of hydro­

genolysis. However, at very low orbital occupancy, the hydrocarbon is 

bound to the metal surface too strongly to react with hydrogen and de-

sorb, so hydrogenolysis activity decreases. Alloying can be used to 

regulate the contents of the metal surface. 

By increasing or decreasing the amounts of various metals in the 

alloy surface, the catalytic activity of the alloy can be regulated C23) . 

Surface contamination plays an extremely important role in catalysis. 
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Reactant chemlsorption is a prerequisite for hydrogenolysis and surface 

contamination can preclude this process (23). In some reactions, adsorp­

tion of species which are seemingly unrelated to the reaction can enhance 

catalytic activity. An example of this type of behavior is found in the 

oxidation of ethylene over silver, where preadsorption of small amounts 

of CI (moderator) increases the yield significantly (50). However, in 

the hydrogenolysis of hydrocarbons on nickel, oxygen contamination de­

creases catalytic activity (23). 

Summary and Future Research Suggestions 

The hydrogenolysis of isobutane has been investigated over the 

pressure range 0.1-10.0 torr. The iridium catalyst is a 48.5 Â thick 

film vapor deposited on the inside of a round bottom flask under ultra 

high vacuum conditions. Methane was observed to be the only product. 

The net reaction for this process is : 

VlO + = "^4 

Isobutane hydrogenolysis is accomplished via irreversible adsorption 

of the hydrocarbon followed by decomposition on the iridium surface into 

monocarbon fragments. Subsequent hydrogénation and desorption of these 

monocarbon fragments in the form of methane completes the process. Ex­

change between deuterium and isobutane is negligible at 175°C and 209°C. 

Thermal desorption shows Isobutane adsorption and decomposition to be ir­

reversible. Thermal desorption distinguishes three binding states for 

hydrogen on polycrystalline iridium containing carbon. The two states 
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leading to hydrogen desorption at 110®C and 160°C are due to hydrogen 

atomically adsorbed on low and high index crystal planes, respectively. 

Hydrogen desorbing at 320°C is due to hydrogen bound to carbonaceous 

fragments chemisorbed to the surface. 

Hydrocarbon adsorption Increases with Increasing temperature while 

hydrogen adsorption decreases. The equilibrium constant for hydrogen 

adsorption decreases as temperature increases. Catalyst regeneration 

procedures employing deuterium and reaction order data indicate that 

CHg* is the major surface species. Dependence of reaction rate on hy­

drogen and isobutane partial pressures was established by measurements of 

initial rates of methane production. The following rate law fit the ex­

perimental data very well. 

Hydrogenolysis of Isobutane on iridium occurs via a Langmuir Hinshelwood 

mechanism. The hydrogen order varies from +2 to -1. The isobutane order 

varies from +1 to -1. 

The activation energy for hydrogenolysis is 24.20 kcal/mole. The 

heat of adsorption of hydrogen on the iridium thin film is 51.52 kcal per 

mole. The activation energy for hydrocarbon adsorption is 2.28 kcal/mole. 

Desorption of isobutane as methane molecules is favored energetically as 

compared to desorption with an Intact isobutane carbon skeleton (exchange 

reaction route). 

A P 

R = 2 
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The next step in the hydrogenolysis investigation is to catalyze 

the reaction by single crystal surfaces. There are no studies involv­

ing single crystal hydrogenolysis on iridium in the literature. This is 

the only way to isolate the most active surface. LEED and Auger spec­

troscopy can give additional information on surface geometry and composi­

tion under reaction conditions. This study can be complemented by a 

thermal desorption investigation. 

Much more information is also needed on thin films. A question that 

needs to be answered is : "What is the effect of ambient gas exposure 

(Hg, Og, hydrocarbon) during deposition on film structure?" It may be 

possible to induce specific orientation in the film by appropriate choice 

of deposition conditions. 

Electron microscope. Auger spectroscopy and ESCA studies are a few 

suggestions for thin film analysis. Thermal desorption can also be used 

to give activation energies as a function of surface coverage. This would 

give some insight into surface heterogeneity. 
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APPENDIX 

Methane Desorption at 209°C 

Hydrogen pressure = .45 torr 
isobutane pressure (torr) 

.03 

.04 
.06 
.10 
.13 
.21 
.25 

.31 

.38 

Molecules of CH, desorbed x 10 
4 

2.61 
5.21 

11.17 

14.90 
15.64 
19.37 

19.37 

19.37 
20.86 

-16 

Methane Desorption at 209°C 

Isobutane pressure = .16 torr 
hydrogen pressure (torr) 

.04 

.12 

.21 

.32 

.42 

.64 

.77 

Molecules of CH, desorbed x 10 
4 

18.62 
10.43 

8.19 

7.45 
5.96 
5.96 

5.21 

-16 
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Isobutane Order Plots at 209°C 

Hydrogen pressure = .45 torr 

Isobutane pressure Rate Isobutane pressure ^ 
(torr) (molecules/site'sec) rate 

.01 1.34 X ë
 1 

10.22 

.03 2.07 X 10-4 12.03 

.04 2.32 X 10-4 13.29 

.07 2.52 X 10-4 16.18 

.11 2.46 X 10-4 20.85 

.12 2.41 X 10-4 21.84 

.13 2.12 X 10-4 25.23 

.15 2.12 X 10"4 26.42 

00 

2.12 X 10-4 29.54 

.25 1.97 X 10-4 35.41 

.38 1.44 X 10-4 51.01 

.49 1.12 X 10-4 66.21 

Hydrogen pressure = 2.03 torr 

Isobutane pressure Rate Isobutane pressure 
(torr) (molecules/site sec) rate 

.09 .32 X 10-3 16.67 

.12 .43 X 10-3 16.84 

.16 .74 X 10-3 14.93 

.25 .86 X 10-3 17.02 

.33 .98 X 10-3 18.34 

.41 .94 X 10-3 20.91 

.67 .88 X 10-3 27.53 

.89 .67 X 10-3 36.53 

1.22 .50 X 10-3 49.42 
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Hydrogen pressure = 4.20 torr 

Isobutane pressure Rate Isobutane pressure ̂  
(torr) (molecules/site'sec) rate 

.09 .46 X 10"3 14.37 

.27 1.08 X 10~^ 15.75 

.67 1.80 X 10"3 19.30 

1.44 2.13 X lO"^ 26.04 

1.76 1.80 X 10"^ 34.12 

2.71 1.51 X 10"3 53.18 

4.01 .96 X 10"^ 64.61 

P„ (torr) P„ ^ (torr^) I (torr^/(molecules/site*sec)^) 
*2 *2 

.45 .67 8.59 

2.03 1.43 10.68 

4.20 2.05 11.12 

P„ (torr) P„ ^ (torr ^) S P ^ (torr/(molecules/site-sec)^) 
^2 ^^ 

.45 1.49 77.28 

2.03 .70 41.95 

4.20 .49 27.94 
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Hydrogen Order Plot 

at 209°C 

Isobutane pressure = .04 torr 

Hydrogen pressure (torr) Rate Cmolecules/site«sec) 

.04 .16 X 10-4 

.09 .56 X 10-4 

.09 .56 X 10-4 

.14 .70 X 10-4 

.21 .84 X 10-4 

.41 2.19 X 10-4 

1.24 3.18 X 10-4 

1.98 3.21 X 10-4 

2.74 3.08 X 10-4 

3.27 2.90 X 10-4 

4.24 2.79 X 10-4 

Energy of Activation Data 

Hydrogen pressure = .42 torr 

Isobutane pressure = .17 torr 

T(K) Rate Cmolecules/site-sec) 

449 2.12 X 10-4 

454 4.44 X 10-4 

468 10.08 X 10-4 

478 12.11 X 10-4 

494 26.63 x lo"^ 

505 52.47 X 10-4 
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Methane Desorbed as a Function 

of Temperature 

(molecules x lO'^*) 

449 5.96 

468 9.54 

478 16.64 

494 35.74 

505 52.44 

Methane Desorptlon at 175°C 

Isobutane pressure = .16 torr 

-16 
„ , ,. . CH, desorbed (molecules x 10 ) 
Hydrogen pressure (torr) 4 

.04 6.70 

.09 4.47 

.09 5.62 

.14 4.10 

.21 2.98 

.41 1.49 

1.24 2.23 

1.98 1.86 

2.74 1.12 

3.27 .74 

4.24 .74 
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Methane Desorption at 175*C 

Hydrogen pressure = .41 torr 

Isobutane pressure (torr) 
CH^ desorbed (molecules x 10 

-16, 

.04 .37 

.07 .74 

.08 1.49 

.13 1.86 

.16 2.23 

.53 4.47 

.92 6.70 

1.22 6.70 

2.08 6.70 

2.87 6.70 

Isobutane Order Plot at 175®C 

Hydrogen pressure = 4.1 torr 

Isobutane pressure 
(torr) 

Rate 
(molecules/site.sec) 

losbutane pressure 
rate 

.40 

.69 

.83 

1.34 

1.63 

5.29 

9.23 

12.21 

20.85 

28.78 

1.42 X 10 

1.99 X 10 

2.51 X 10 

3.50 X 10 

4.20 X 10 

4.19 X 10 

5.87 X 10 

3.46 X 10 

2.31 X 10 

1.53 X 10 

-4 

-4 

-4 

-4 

-4 

-4 

-4 

-4 

-4 

-4 

50.31 

55.87 

54.55 

55.63 

59.14 

106.68 

146.68 

179.01 

285.38 

411.02 
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Hydrogen Order Plot 

at 175°C 

Isobutane pressure =1.1 torr 

Hydrogen pressure (torr) 

.50 

. 64 

1.11 

2.07 

3.30 

4.26 

6.03 

8.84 

Rate (molecules/slte'sec) 

.71 X 10 

1.12 X 10 

2.33 X 10 

3.42 X 10 

4.08 X 10 

4.22 X 10 

3.66 X 10 

3.33 X 10 

-4 

-4 

-4 

-4 

-4 

-4 

-4 

-4 
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